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Motions in a Bose condensate 
111. The structure and effective masses of charged 
and uncharged impurities 

J Grant? and P H Roberts 
School of Mathematics, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 
7RU, UK 

Received 12 March 1973, in final form 24 August 1973 

Abstract. On the assumption that the radius b of an uncharged hard impurity (3He) in an 
imperfect Bose gas is large compared with the healing length a, it is shown that its effective 
(hydrodynamic) radius be,, is b + a  J2. It is also shown that, correct to the first two orders 
in the expansion in powers of a/b, its effective (hydrodynamic) mass is $npb:,,, where p is 
the fluid density. The modifications to these results required when the impurity is charged 
(as for 4Hei)  are derived. The results are exact within the framework of the theory, and are 
obtained analytically. Comparisons with the numerical integrations of Padmore and Fetter 
are made. 

The structure of the electron bubble is examined with a theory which treats E = (c~p/ lM)”~ 
as small (and p / M  as negligible), where p is the electron mass, M the boson mass, and I is 
the electron-boson scattering length. To leading order, the radius of the bubble is shown 
to be b = (nM2a2/pp) ’ ’5 ,  and the electron energy is found to be h2/8pbz .  The corrections 
required at the next order in the a/b expansion are given, and it is shown that, even when 
polarization effects are negligible, be, is less than b. The effective mass is still, however, 
closely $npb:,,, although motion tends to expand the bubble and make it oblate; the ellipticity 
is evaluated. When polarization effects are included, the radius of the bubble is reduced by 
about 0.3 healing lengths. Comparisons are made with the numerical calculations of Clark. 

1. Introduction 

It has become increasingly apparent over the past decade that the deliberately introduced 
impurity can be a fruitful experimental probe of the structure and behaviour of helium 11. 
These impurities are of three types: neutral atoms such as 3He, positive ions such as 
4Hei ,  and negative ions such as electrons. The first two are ‘hard’ impurities of radii 
about 4 8, and 8 8, respectively ; the light electron, through the energy of its motion, 
carves out a ‘soft’ bubble of about 16 8, radius from the surrounding helium. In all cases, 
the induced hydrodynamic mass of the impurity is comparable with, or greater than, its 
physical mass. It is one of the objectives of the theory to compute this induced mass. 
Also, the flow at great distances from a moving ion resembles that of a sphere of a radius 
beff, different from its actual physical radius b. It is another objective of the theory to 
calculate this effective radius. The current experimental and theoretical situation has 
been recently comprehensively reviewed by Fetter (1974). 

t Present address : Aerodynamics Division, RAE, Farnborough, UK. 
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In the previous two papers of this series (Roberts and Grant 1971, Grant 1971), the 
authors have used the Bose condensate model in an attempt to throw added light on the 
structures and oscillation spectra of vortex lines and rings in helium 11. The same model 
is used here to study the structure of the ions. In this sense, the paper continues work by 
Gross (1966), Clark (1965,1966), and Padmore and Fetter (1971, to be referred to  as PF). 

Gross (1966) proposed two models for an impurity in a condensate. The first, which 
he termed ‘the instantaneous wavefunction’ approximation, is the more suitable for the 
(comparatively) massive impurity, such as 3He. It supposes that the probability of 
finding a boson at a given position depends on the precise value of the impurity co- 
ordinates at  that moment. The second, which he termed ‘the self-trapping wavefunction’ 
approximation, is the more suitable for the light impurity, such as the electron. It 
supposes that the impurity wavefunction is determined by the precise positions of the 
bosons at that instant. PF have used the first of these approximations to evaluate 
numerically the effective radius and the induced mass of the impurity. We obtain the 
same quantities analytically, using an expansion technique based on the smallness of 
c = a/b, the ratio of the healing length a to the impurity radius b. Our method is ex- 
pounded in the appendix, where comparisons are made with the results of PF. We find 
that our vahes, which are calculated from elementary algebraic expressions, are not 
more than a few per cent from theirs, in the cases of prime physical interest. 

Our results for the hard impurity are, in fact, readily summarized. The uncharged 
impurity has an effective hydrodynamic radius, beff ,  of b + aJ2, and an induced mass, 
mind, greater by a factor of A! = (b+3aJ2)/b than the value, m,, = $cpb3, predicted 
by classical fluid mechanics, where p is the mass density. In the case of the positive ion, 
we introduce the dimensionless parameter 

&m*Z2e2a 
h2b3 ’ a =  

where 15 is the atomic polarizability, Z e  is the ionic charge (in esu), and m* is the ionic 
mass, modified to allow for recoil effects. We find that beff is reduced to b + a d 2  - 5aa/7, 
and that A! = 1 +(3J2 - lOa/7)(a/b). 

In our opinion, the simplicity of such easily computed expressions for beff and mind, 
and indeed the elementary nature of the method by which they were derived, constitute 
an advantage over the numerical and variational approaches (provided, of course, that 
cis small). Our expansions in c are systematic and exact, the errors involved in truncation 
at  any level being readily estimated, in contrast to variational methods from which 
eigenfunctions are often poorly given and for which it is often difficult to estimate how 
far the bound obtained for the eigenvalue differs from its true value. Also, in contrast 
to the numerical approach, results are not obtained on a ‘case to case’ basis, and an 
appreciation of the physical structure of the solution is forthcoming. 

The self-trapping theory is considerably more complex. Gross (1966) identified the 
three principal contributions to the energy, 

h2n2 2nVop2b3 
2pb2 3M2 

&E = -+ + 411Tb2, 

of the stationary electron. The first is the ground state energy E ,  of a particle of mass p 
in a spherical container having infinite potential walls ; the second is the energy required 
to dig such a cavity in the condensate in the face ofthe short-range repulsive potential V, ; 
the third arises from the tension T of the interface between electron and condensate. 
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By studying a simple plane model, Gross was able to estimate that, on the condensate 
picture, 

TN- J2h2p 
3M2a ' 

In (1.2) and (1.3), M is the helium mass. 
The ratio of the surface tension energy to the cavity energy is, by (1.3), 4aJ2/b. 

Thus when p is large (b  small), the surface tension energy dominates the cavity energy. 
On minimizing &E with respect to b, Gross found that &E N h2n2/pb2, and 

h2n2 3M2a b E - -  -- 
8npT 8 n p p  J2'  

If on the other hand (as in our case) p is small, the final term in (1.2) is small compared 
with the term which preceeds it. Then &E N 5h2n2/3pb2, and 

n h 2 M 2  nM2a2 b5 N ~ - -, 
2PV0P2 - PP 

Introducing the surface tension as a correction, (1.5) is modified to 

In 5 2, we adopt the same technique (expansion for small c) to examine the self-trapping 
approximation as we used for the instantaneous wavefunction approach. Since c is 
rather smaller for the negative ion than for other impurities, we have grounds for believing 
that our results will be even more reliable for the electron bubble than for the hard ions 
for which, as we have already stated, good agreement with the results of PF has been 
obtained. In the analysis of 0 2, we do indeed confirm the general form of (1.6) ; in fact, 
we find that (1.5) is exact to leading order as c = a/b -, 0. A detailed discussion of the 
healing layer on the surface of the bubble, in which the electron and condensate wave- 
functions overlap, shows that the surface tension should not be independent of the 
electron : the constant 8J2/15 in (1.6) should be replaced by a function of q2 = pU,/M V, , 
where U ,  is the repulsive short-range potential between electron and boson. This 
function. which can be evaluated only by simple numerical integrations, is given in a 
few cases. The results are compared with the computations of Clark (1965, 1966), and 
the agreement is found to be good. Various values of a and of the electron-boson 
scattering length 1 = pU,/2nh2 are considered, and values of 6 in the range 15.75 8, to 
18.51 8, are obtained (see table 1). It is shown (0 3) that, when polarization effects are 
allowed for, these values are reduced by about 0.3 healing lengths. 

When the bubble moves with a velocity U ,  slow compared with the speed of sound, 
it becomes a slightly oblate spheroid of approximate ellipticity 39(ua/~)', where K( = h/M) 
is the unit of circulation. It is now found that the effective hydrodynamical radius beff 
of the bubble is less than 6, but that the classical expression $npb3 still provides a good 
estimate of the induced mass provided that 6 is replaced by befr. Results for the electron 
bubble are summarized in table 1 in which NDU stands for non-dimensional units (based 
on a as length, and pa3 as mass), 'mind' is induced mass, and 

(1.7) 
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w m m w m w  - - - 0 o m  
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0 0 0 0 0 0  
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0 0 0 0 0 0  
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The last two columns give Ab, the amount by which b must be reduced if polarization 
effects are included. Also shown are the electron energy E , ,  and the creation energy &. 

2. The moving uncharged bubble 

The objectives of this section are to compute the effective radius and induced mass of an 
uncharged impurity, using the self-trapping wavefunction approximation (Gross 1966). 
The effect of charge is considered in 0 3. 

In the Hartree approximation, the problem reduces to that of solving the coupled 
equations 

(Gross 1966, Clark 1965, 1966). Here M, E ,  and $ are the mass, single particle energy 
and wavefunction for the bosons ; like quantities for the impurity are denoted by p, E ,  
and $. The wavefunctions are required to obey the normalized conditions 

(2.3) 

where N is the total number ofbosons in the system, which fills volume t. In what follows, 
we allow N and t to become infinite together. In writing (2.1) and (2.2), &function forms 
Uo6(x - x’) and Vo/,6(x - x’) have been assumed for the pseudopotentials describing the 
repulsion between (respectively) boson and impurity, and boson and boson, where x 
and x’ are their positions. To lowest order, perturbation theory predicts such pseudo- 
potentials, with 

2?clA2 47t dh2 v, = ~ 

M ’  
U0 = -, 

P 
(2.4) 

where 1 is the boson-impurity scattering length, and d is the boson diameter (eg Huang 
1963, chap 13). The expectation value of the total energy of the system is 

To cast the theory into dimensionless form, we introduce the healing length a, 
defined by 

U = h(2p, Vo)- 1’2 = (871 d $ i ) -  ‘ I 2 ,  (2.6) 

where p,  = M$; = EM/Vo is the mean condensate mass density. Unlike our two 
previous papers in this series, we do  not use a as OUT unit of length, since the radius of the 
bubble would then turn out to be ‘large’, in fact of order a/€,  where 
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(In application, E N 0.2; see below.) Instead, we introduce the transformations 

Equations (2.1) to (2.3) give 

2if2d- = - 6  2V24+(q21$12-E2k&)4, (2.10) 
at 

solutions of which must satisfy 

where 
1 i2 

rk, = (%) . U 1  q 2 -  - -=-  
MVo 2d’ M ’  

(2.1 1) 

(2.12) 

(2.13) 

In writing (2.1 l), we have assumed that we are in a frame in which the condensate is at 
rest at  infinity. The constant k, in (2.1 3) is a dimensionless measure of the single-particle 
impurity energy E , .  According to (2.5), the energy of the whole system, measured from 
the state in which the condensate is uniformly spread over all space, is (in units of 
E2a3/Voc3) 

4 = J- [IV$12 ++U - 1 $ 1 2 ) 2  + 1$I214l2 + q-21v4121 dr. (2.14) 

We will suppose that the only disturbance present in the condensate is that caused 
by the uniform motion of the impurity with velocity U in the positive z direction ; we 
define U = aMu/hc to be its dimensionless speed. Though $ and 4 are not time in- 
dependent, z and t must always appear in the combination z -  U t ,  since the disturbance 
preserves its form as it travels in the z direction. Thus, we may replace a/& by - Ua/az  in 
(2.9) and (2.10), to obtain 

r 

(2.15) a* r2V2$ = (I$12+t-21$12- 1)$+2ic2U--, 
a Z  

c2V24  = (q21$I2 -~~k&)4+2it’dU-. (2.16) a4 
a Z  

Equation (2.15) may be reduced to fluid mechanical form by writing 

$ = Rexp(iS), (2.17) 

where R and S are real (eg Roberts and Grant 1971,g 2). Then R2 may be regarded as the 
fluid density, and S as the velocity potential of the flow. Because of the small size of 
6( N 1.4 x for the application to the electron in helium which we have in mind, we 
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neglect the last term in (2.16)’ and can therefore, without loss of generality, assume that 
4 is real. O n  dividing (2.15) into its real and imaginary parts, we obtain 

(2.18) 
as 
a2 

c~[V’R-R(VS)~] = ( R ’ + E - ~ $ ~ -  1)R-2r2UR--, 

dR 
RV2S+2VR. VS = 2U--, 

a Z  
(2.19) 

r2V2$ = (q2R2 - czk&)4 .  (2.20) 

We will seek solutions valid for small U .  Without loss of generality, we assume 

R = Ro(r)+ U2[RZO(r)+ R,,(r)P,(cos e)] + . . . , 
S = US,(r)P,(cos e)+ . . . , 
4 = 40(r)+ u ~ [ ~ , , ( ~ ) + ~ , , ( ~ ) P , ( c o s  e11 + . . . , 

(2.21) 

(2.22) 

(2.23) 

where ( r ,  8, x) are spherical coordinates, with origin at  the centre of the bubble and 
8 = 0 along U. Substituting (2.21) to (2.23) in (2.18) to (2.20) and equating like powers of 
U ,  we obtain a sequence of coupled ordinary differential equations, of which the first 
few are 

d2S, +---- 2dS,  + 2 0  dR dS 1 = 2 0  dR 
Ro( - dr2 r dr ? I )  dr d r  dr ’ 

(2.24) 

(2.25) 

(2.26) 

(2.27) 
dS, 2S, 

= (3Rt+ 1)R20+ 

rzr*+: %] = q 2 ( 2 R 0 4 0 R 2 0 + R ~ 4 2 0 ) - t 2 k & 4 , 0 .  (2.28) 

O n  substituting (2.21) to (2.23) into (2.14), performing the angular integrations, carrying 
out some integrations by parts, and neglecting terms of order U4 and smaller, we obtain 

(2.29) 

In considering how (2.24) to (2.28) may be solved, we recall that the principal applica- 
tion we have in mind is the electron bubble in helium. If we take pm = 0.145 g ~ m - ~  
and d = 2.7 A (Clark 1966), we obtain a = 0.82 A. The work of Burdick (1965) and 
O’Mallev (1963) indicates that I N 0.60 A, from which c ‘v 0.18. If, alternatively, we 
take a = 1.28 A, as is implied by the work of Rayfield and Reif (1964), we obtain 



Motions in a Bose condensate III  267 

d 2: 1.11 A and, on again taking 1 = 0.60 A, we obtain E ‘v 0.20. Both of these estimates 
suggest that good results will be obtained from a theory which treats E as small. Such a 
theory is developed below. It is supposed throughout that q = 0(1)  in the limit E -, 0. 
Using the data just quoted, we find that q N 0.33 for d = 2.7 A, and q 2: 0.52 for 
d = 1.11 A. 

The term ~ - ~ 1 4 1 ~ $  on the right-hand side of (2.15) apparently dominates in the limit 
E + 0. We may distinguish three possibilities defining three distinct regimes of the 
solution : (i) a ‘mainstream condensate’, (ii) a ‘mainstream impurity’, and (iii) a ‘boundary 
layer’, between them. In (i), the left-hand side of (2.15) is negligible, but (despite appear- 
ances) ~ - ~ l $ l ~ $  is not large: the impurity wavefunction 4 is too small. Similarly in (ii), 
the condensate wavefunction $ vanishes to leading order, and ~ - ~ 1 4 1 ~ $  does not domi- 
nate other terms in (2.15). In (iii), i t  transpires that 4 = O(E) and d/dr = O(l/c). Thus, 
~ - ~ 1 4 1 ~ $  is of the same order as other terms, on the right-hand side of (2.15), and also as 
its left-hand side. The problem reduces to that of constructing acceptable solutions in 
(i) and (ii), and matching them through a solution of (iii). Mathematically, the problem 
is one of singular perturbation theory, and is of a type frequently encountered in the 
study of high Reynolds number flows in fluid mechanics, from which the terms ‘main- 
stream’ and ‘boundary layer’ used above were drawn. In view of a referee’s comment on 
the first version of this paper, we wish to  emphasize that the matching procedure is not 
merely one of ensuring the continuity of the solution without considering the continuity 
or otherwise of its derivatives ; it is one of constructing uniformly valid solutions, which 
together with all their derivatives, are continuous everywhere to the order warranted. 
The method is expounded in well known texts by Cole (1968) and van Dyke (1964); a 
conceptually similar procedure was adopted by Langer (1937) in his theory of penetration 
of potential barriers. 

(i) The muinstream condensate. Assuming that d/dr = 0(1), the dominant terms of 
(2.24) and (2.27) vanish if 4 = 0, ie if 

(2.30) 4 0  = 4 2 0  = 0. 
The remaining 0(1)  terms of these equations, together with (2.26), give 

(2.31) Ro = 1, 
where C is a constant. 

R , ,  = - E2C2r- 6, S I =  -Cr-  2 , 

To leading order, (2.22) and the last of (2.31) give 

S = cos 8, (2.32) 

which should be compared with the classical (dimensionless) result, 

S = -$Ub:ffr- cos 6, (2.33) 

for the potential flow created by a moving sphere of radius beff.  This suggests that we 
might profitably introduce the effective hydrodynamic radius beff of the ion by writing 
(see PF) 

bX = 2C. (2.34) 

(ii) The mainstream impurity. Assuming again that dldr = 0(1), we now make the 
dominant terms of (2.24) and (2.27) vanish by setting $ = 0, ie by taking 

Ro = R 2 ,  = 0. (2.35) 
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The equations governing 40, 420 and (in fact) 422 reduce in leading order to Helmholtz 
equations, to which the physically acceptable solutions are 

40 = AjO(kMr), 4 2 0  = BjO(kMr), 4 2 2  = Dj2(kMr), (2.36) 

where A ,  B, and D are constants, j J z )  is the spherical Bessel function ( ~ 1 / 2 z ) ’ / ~ J , + + ( z ) ,  and 
J,(z) is the Bessel function of the first kind, of order v and argument z .  

We may define the edge of the impurity bubble to  be the locus, r(0, x), of the smallest 
values of r on which 4 vanishes. By (2.23) and (2.36), we see that its equation is that of 
the spheroid 

r = b 1 + U 2  - j2(n)P2(cos0) , [ (7 1 (2.37) 

where b = n / k M .  It can be shown, by an analysis similar to that given below, that D / A  
is negative. Since j 2 ( x )  > 0, it follows that motion makes the bubble oblate. In fact, its 
ellipticity is approximately 0-98 c2U2. We also observe that the quantum radius b is 
not necessarily the same as the effective radius beff introduced earlier. We will find, 
however, that the two quantities are equal, to leading order in c. 

In describing the surface (2 .37)  as ‘the edge of the bubble’, we do not wish to imply 
that 4 is nonzero only for points within (2.37), or even that (2 .36)  applies with uniform 
validity up to the surface (2.37). The boundary layer that adjusts the mainstream con- 
densate and impurity solutions in fact contains (2.37). If, ignoring this complication, 
we suppose that 4 is nonzero only within (2.37), we find that (2.23), (2.36) and the normali- 
zation condition (2.12) give 

2 k L  A 2 + 2 A B U 2  = -. 
TI 

(2 .38)  

Because of the boundary layer, this result is not precise. Since, however, the error 
involved is only of order c3, which is higher than the order to which we will in fact work, 
we will accept (2.38). Thus, while the condensate is not actually an abrupt potential 
barrier to the impurity, we may ignore this fact when applying the normalization 
condition to order c2. 

(iii) The boundary layer. Our earlier discussion suggests that between regimes (i) 
and (ii) there exists a boundary, or ‘healing’, layer which matches the solutions in the two 
mainstreams together. It suggests that we should introduce the stretched coordinate t 
defined by 

IC 
r = b + c t  = - - + e t ,  

kM 
(2.39) 

and write 

In examining the boundary layer, it is convenient to expand the functions (2.40), and 
constants such as A ,  B and C, in power series in c. We will not expand kM in such a way, 
but will suspend the normalization condition (2.38) to the end of the calculation. On 
finally substituting our solution into (2.38), we will then recognize that kM = kM(c, U’). 
We will write 

R = R , + c R , + c 2 R 2 +  . . . ,  (2.41) 
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and expand H, S, X, T, A ,  B and C similarly. (The new significance of the suffixes 0, and 
1 in R, and S ,  should not cause confusion.) Substituting series of the form (2.41) into 
(2.24) to (2.28) and equating like powers of C, we obtain a sequence of equations amongst 
which are 

d2R, -- - (R;+X~,-I)R,, 
d t 2  

d2Xo -- 
d t2  - q2R2,X,. 

(2.42) 

(2.43) 

These must be solved numerically but, once this has been done, the solution to order r2 
can, in fact, be completed in terms of R, and X,. 

Correct to order E ,  (2.24) to (2.26) give 

d2R 2 rdR 
d t 2  b d t  

d2X 2 r d X  

-+-- = ( R ~ + x ~ - ~ ) R ,  

q2R2X, dgZ+xz= 

d2S 2 rdS  d R d S  dR 
R-+-- +2--=2~-- .  

(dC' b d t )  d t  d t  d t  

(2.45) 

(2.46) 

Multiplying (2.44) by dR/dt, (2.45) by q - 2  dX/dt and adding, we see that for any t l  
and t2,  

[ ($) + q-2 (  $) -3R4 + R2 - R2X2 1:: = -;lC: [ ( $ ) 2 + L ( e ) 2 ] d t . .  q2 d t  (2.47) 

By (2.31) and (2.36) we have 

2 
R(t1) -+ 1, X( tJ  + 0, N t 2 )  + 0, X ( t 2 )  -+ -&+A€(  b 2) , (2.48) 

as 5 1  -+ + co and t2 -+ - co. Thus, (2.47) gives, correct to order E, 

(2.49) 

where the bar through the integral sign signifies that the finite part of the integral is taken. 
To leading order, (2.46) shows that R2 dS/d< is constant, but the condition of zero 

mass flux into the bubble (t -+ - co) implies that that constant is zero. To order C, (2.46) 
therefore gives 

R 2 s  = rR2+p, (2.50) 
d5 

where p is a constant which, again by the condition of zero mass flux, is zero. It follows 
that, to order r, 

s = r t + y ,  (2.51) 
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where y is a constant. Matching this solution to (2.31), we obtain, to order E, 

n 

(2.52) 

the first of which shows that, to this order, b and beff coincide (cf equation (2.34)). 
It is interesting to note that the form (2.51) of the condensate potential yields velocity 

components that diverge inside the bubble as 5 -, - CO. There is, however, no cause for 
alarm ; the condensate density is exponentially small inside the bubble and thus there is 
no mass flux for large 1t21. The situation is similar to that arising near the axis of a 
rectilinear vortex in the condensate (eg Roberts and Grant 1971) : here the velocity di- 
verges as 63- ’ as the distance 63 from the axis approaches zero, but the density decreases 
as 63’. 

Making use of (2.51) and (2.52), we find that (2.26) gives 

d2S2 dRo dS2 3R RO7+2-- = -0 
d t  d t  d t  b ’  

showing that 

A further integration gives 

where y’ is a constant. Matching this to (2.31), we obtain 

3 “  
C I  = -;b2-f Rg(t)dc, 

L J - ,  

which, taken with (2.34), shows that the effective radius is 

(2 .53 )  

(2.54) 

(2.55) 

(2.56) 

(2.57) 

On using (2.39) and (2.40) to express (2.27) and (2.28) in boundary layer form we 
obtain 

d2H 2~ d H  
d t 2  b + r t  d5 
-+--- (3R2 + X2 - l)H - 2RXT 

1 dS dS ES 
3 [ (d t )  d< ( b + r i  -4(&)]’ 

d t 2  b + e t  d5 

= - R  - -2r-+2- 

E +--- 2E dT q2(R2T+2RXH)+~2kkH = 0. 

(2.58) 

(2.59) 

By (2.51) and (2.52), the inhomogeneous (source) terms in these equations are of order 2. 
It follows that, to order E ,  only the complementary function can contribute to H and T. 
Excluding the singular parts of the solution of the homogeneous equations, we find 
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(by comparison of (2.58) and (2.59) with (2.24) and (2.25)) that 

d X  
d t  

T =  V--, dR 
d t  

H = V--, (2.60) 

where v is a constant. O n  matching to (2.31) and (2.36), we can show that v = 0. Thus, 
H and T must be of order c2,  and, by (2.51), (2.52), (2.58) and (2.59), we have 

d2H2 
-- (3Ri+X~-1)H2-2R,3X0T2 = iR0,  
d t 2  

(2.61) 

(2.62) 

These should be compared with the equations obtained by differentiating (2.42) and (2.43), 
namely 

d 2  T2 -- q2(RiT2 +2RoXoH2) = 0. 
d t 2  

(2.63) 
d2Rb 
-- (3Ri + X i  - 1)Rb - 2R0X0X0 = 0, 
d t 2  

d2Xb 
-- q2(RiXb + 2RoXoXb) = 0, 
d t 2  

(2.64) 

where Rb = dR,/d< and Xb = dX,/dt. This suggests the following manipulation. 
Multiply (2.61) to (2.64) by respectively R,, q-2T,,, - H,, -q-2T2, and add. The result 
is an exact differential, which can be integrated to  give 

= 0. (2.65) 

On taking the limits, t1 -, CO and t2 -, - W ,  we obtain 

(2.66) 

This completes the solution as far as we require it. We will note however that the 
energy (2.29) can be divided into mainstream and boundary layer contributions, the last 
of which can be expressed in powers of c by using expansions of the form (2.41). On 
ignoring terms of order c2  and of order c2 /U2 ,  we obtain 

-R:) dt+$w2U2b2ff .  (2.67) 1 
The coefficient of U2/2 in the expansion of in powers of U 2  is the induced mass mind of 
the impurity (see Gross 1966. equation (2.7)). At first sight, (2.67) might suggest that this 
is simply 3npb2ff. It should be noted, however, that the induced mass does not arise 
solely from the kinetic energy of the fluid (the last term of (2.67)); motion expands the 
bubble as a whole, ie the k ,  appearing in the first two terms of (2.67) depends implicitly 
on U'. In fact, from (2.38), (2.49) and (2.66), we obtain 

(2.68) 
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and the quantum radius of the bubble is therefore 

1 dX, 
[(%)’+-(-)‘Id& 4’ d t  (2.69) 

which in dimensional units is 

b =  (“~~)1 ’5 [1+$( ! ! ) ’ ]  - -s,fmm [(%)’+-$(%)’] dt .  
(2.70) 

The presence of the second term on the right-hand side of (2.70) shows that the bubble 
radius is slightly increased by the passage of condensate over its surface; by Bernoulli’s 
theorem, such a flow creates a reduction in condensate pressure which causes the bubble 
to expand. The form of (2.70) suggests that, for small E, the present approximation will be 
a good one provided U is small compared with the speed of sound, ~/2na,/2.  It further 
suggests that, when placed in more general flows (such as that created by a line vortex), 
it will be admissible to visualize the bubble as a sphere having a radius given by the first 
and last terms on the right-hand side of (2.70), except when these flows are ‘too rapid’. 
Even a bubble contained within a vortex line may be well represented by the present 
theory, except possibly for small regions near where line and bubble meet. The method 
by which Donnelly and Roberts (1969) estimated curvature of the energy well for electron 
capture by a vortex line would therefore appear to be well founded. 

When the expression (2.68) for k, is substituted into (2.67) and the coefficient of U’ 
is extracted, it is found that the dimensionless induced mass of the ion is 

(2.71) 

The results of applying this theory to the electron bubble are shown in table 1, where 
it has been assumed that pm = 0.145 g ~ m - ~ ,  p = 9.109 x lo-’* g and M = 6.648 x 

g. Several sets of estimates for a and I have been used. Values obtained for the 
creation energy &E of the stationary bubble (U = 0), are consistent with the estimates of 
Clark (1966), who from a variational calculation obtained the value 0.32 eV as an 
upper bound. The results of a typical integration of (2.42) and (2.43) are shown in 
figure 1 .  It may be noted that the integral appearing in (2.57) arises from the shaded 
area to the left of 5 = 0 minus the shaded area to the right. For the case shown, and 
indeed for all values of q likely to be relevant to liquid helium, the condensate density is 
relatively larger for 5 -= 0 than for 5 > 0, and the integral arising in (2.57) is positive and 
of order unity. Thus, the effective hydrodynamic radius of the bubble is less, by some 
1 to 2 healing lengths, than its quantum radius. Values of b and beff  are given in table 1. 

It must, of course, be wondered how much confidence can be accorded to these 
numerical results, bearing in mind that they were derived from a theory in which E was 
assumed small, whereas it appears that E may be as large 3 in our application. For this 
reason, we show briefly in the appendix the result of applying our method to the instan- 
taneous wavefunction approximation, for which PF have undertaken numerical calcula- 
tions which do not suppose that E is small. Even for E as large as 3 ,  we find that our 
results for bcff differ from those of PF by rather less than 10 %, while for E = &they agree 
to within 2 %. 
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-6 -4  - 2  0 2 4 

Figure 1. Showing the electron wavefunction X,, and the condensate wavefunction R, 
obtained by integration of the equations (2.42) and (2.43) for the case q = 0.52. 

3. The stationary charged bubble 

The charge on the electron is now recognized. Suppose that a point charge - e  is 
situated at xo in a medium whose dielectric constant.K(x) varies slightly with position, 
ie 

K ( x )  = Ko+f(x) ,  (3.1) 

V . (KVR) = 4rre6(x -xo). (3 .2)  

where K O  = K(xo)  and I f 1  << KO. In electrostatic units, the potential, Q(x), obeys 

Solving (3 .2)  by iteration, we obtain, to order f / K o ,  

(3.3) 

Since f ( x o )  = 0, this may be written as 

e 
R(x) = - [K(x’)  - K ( x ~ ) ]  d?. (3 .4)  

The integral on the right of (3.4) represents the potential, R,(x, xo) created at x by the 
polarization charges induced by the electron. Its contribution to the potential energy 
of the electron is 

V,(XO) = -+eQ,(x,, xo), (3.5) 
or 

Recalling that, in terms of the polarizability B of the helium atom, 

K ( x )  = 1 +Zl$(x)l2, (3.7) 
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and that Iq5(x)l2 dx is the probability that the electron is situated within dx at x, we see 
that the term 

must be added to the energy (2.5) of the system. On performing independent variations 
with respect to I) and 4, we obtain two new contributions from (3.8) to the equations 
(2.15) and (2.16), and after scaling in the manner of 0 2, we obtain 

(3.10) 

where the dimensionless polarizability is 

oiMe2a 
471 b3 hZ ’ 

a=- (3.1 1) 

The problem of solving (3.9) and (3.10) for the general case of a moving bubble is 
intricate, and we confine attention to the structure of the stationary electron bubble in 
the limit of small c. We will assume that a is 0 (1)  as c + 0. Since spherical symmetry 
obtains we may take I) and 4 to be real, and for consistency of notation we denote 
$ by R(r). Equations (3.9) and (3.10) then reduce to 

(3.12) 

(3.13) 

To recognize that the electron energy is changed by polarization, we have replaced k, 
by k .  

The mainstream condensate solution replacing (2.31) can be obtained to order c, by 
substituting the zero order expression 4, for 4 (from the first of (2.36)) into the integral 
on the right-hand side of (3.12), and setting to zero the bracket in which it lies. We find 

(3.14) 

The mainstream electron solution is also obtained by iteration about 4, : 
4 = 4,+‘&+ f . . .  (3.15) 

On substituting the zero order expression ( R ,  = 1) in the integral on the right-hand side 
of (3.13), we obtain 

(3.16) 

from which we find 

4lW = -~ alifj: f(r’) sin k(r - r’)  dr’, (3.17) 
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where 

sinkr[ nkr 2 2 + l n =  (n+kr)] ‘ 
f ( r )  = - kr n2-k r 

After numerical quadrature, we obtain 

(3.18) 

(3.19) 

(3.20) 

results which are required below. 
The boundary layer analysis follows the same line as that given in 0 2. On expanding 

R and 4 as in (2.41), we again obtain (2.42) and (2.43), but (2.47) is modified by the 
addition of the term, 

‘Ik sin’kr’ 1.8758kA; 
uck2 A i  Ri Jo (n2 - k2r’2)2 dr‘ 2: ( 2n2 ) L Y c R ~ ,  (3.21) 

between the brackets on the left-hand side. After the subsequent matching, it is found 
that (2.49) is amended to 

The final step is that of applying the normalization condition (2.38), which here 
reduces to 

f ’ ( r )  sin kr( 1 +cos kr )  dr+ .  . . 

We find that k is given by (2.68) with the addition of the term, 

(3.23) 

(3.24) 

on the right-hand side. The expression (2.70) for the dimensional radius is amended by 
the addition of 

Ab = - ~ ~ ~ [ 1 . 8 7 5 8 q ( & ) ~ ’ ~ + 2 7 . 5 1 2 ( ~ ) ~ ~ ~ ] ,  (3.25) 

to the right-hand side. 
Comparing with (2.70), we see that the term (3.25) represents a radial contraction of 

the impurity which arises when polarization effects are included. For the electron in 
helium at zero pressure, the non-dimensional polarizability x ,  given by (3.1 I ) ,  is approxi- 
mately 

2012 a = -  
a’ 

(3.26) 

The reduction Ab in radius b caused by polarization has been evaluated using (3.26), 
and is given in the final two columns of table 1. As indeed was argued by Gross (1966), 
the effects of polarization on a structure as large as the electron bubble are not great. 
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Appendix. The moving charged hard impurity 

The objectives of this appendix are to compute the effective radius and induced mass 
of an impurity, using the instantaneous wavefunction approximation (Gross 1966). 
The identical problem has also been examined numerically by PF, using a numerical 
method. Our approach is quite different. As in $ 2 above, we develop the first few terms 
of the expansion of the exact solution in powers of Q = a/b. Unlike $ 2  above, we are 
able to obtain the terms we require exactly, without recourse to numerical work. Com- 
parisons with the results of PF not only suggest that their numerical work was accurate, 
but also that our series converge rapidly, reliable results being obtained even for E as 
large as f (see below). 

In the Hartree approximation, the problem reduces to that of solving 

a* A2 
ih- = --v2t+b+(U+T/ol$lZ-E)$ 

at 2m* 

(Gross 1966). Here m * ( = M p / ( M + p ) ) ,  E and t+b are the reduced mass, single particle 
energy and wavefunction for the bosons, and U(x)  is the interaction potential between 
impurity and boson. The impurity is now a hard sphere, ie an infinite potential barrier 
to the condensate, and we therefore have 

* = 0, at r = b, ( A 3  

while the first of the normalization conditions (2.3) holds as before with the understanding 
that II/ is nonzero only in that part t' of t which is not occupied by the impurity. As 
described in $ 3, the charged impurity creates a polarization in the surrounding con- 
densate. The corresponding potential is 

- bZ2e2 
U ( x )  = ~ 2 ~ 3 4  9 

(PF, Gross 1966). Polarization contributes to 8, and (2.5) is therefore replaced by 

To cast the theory in dimensionless form, we introduce a healing length a, defined 
by (2.6) with M replaced by m*. This substitution is also made in the definition of U 
and also in (2.8), where E = a/b. Thus (2.7) is abandoned, the surface of the impurity 
becomes r = 1, and the dimensionless impurity radius is b = 1. Equation (A.l) gives 
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where 

The nature of the solutions of (A.5) depends principally on the form of U selected in the 
limit z + 0. We will suppose that a = 0(1), B postulate which does not seem physically 
unrealistic (see PF). 

Choosing the reference frame to be the one in which the condensate is at rest at 
infinity, (2.1 1) and (2.19) remain applicable, while (2.18) is replaced by 

Adopting expansions (2.21) and (2.22) we obtain (2.26), while (2.24) and (2.27) are replaced 
by 

€ 2 ( 3 + : 2 )  = (R;-1-ucr-4)R0, 

c 2  { (%+; 2dR2,  7) - 1 Ro[ (SI + 2( 'I} 
2 
3 

= ( 3 R ; - l - ~ r r - ~ ) R ~ , - - r ~ R ,  

The dimensionless form of (A.4) gives, for the excitation energy, gE, 

&E( U2)  = f&(O) - - 85ru2 3 ST SlRo(%)r2 dr, 

('4.9) 

(A.lO) 

The last term of (A.10), which yields the induced mass, mind, of the impurity, follows by 
additional integration from the expression (3.286) of PF ; it is slightly more convenient 
in application than their form. 

We now develop a theory for small c which parallels that given in 8 2, but is simpler 
in that every step can be performed analytically. There are now only two regions to 
consider; (i) the mainstream condensate and (ii) the healing layer. The expressions 
R,  and S ,  given in (2.31) are replaced by 

(A.11) 

S 1 -  - - C ~ r - ~ - r ~ ~ ( r - ~ - 2 r ~ o r r - ~ + f r u C r - ~ + ( 3 r ~ a ~ -  18rSa)r-'+ , . . . (A. 12) 

The solution in the healing layer can be expanded as in (2.41), and the sequence of 
equations obtained from (A.8) and (A.9) can be solved exactly, eg 

R,  = 1 + ~ r ~ r - ~ + 3 c ~ a r - ~ - ( ~ r ~ a ~ - 4 5 r ~ u ) r - * +  . . . , 

J25+---sech2- 2 J 2  5 
3 J 2  

t 5 + -+- -sech2-+3 tanh-+sinh J25 
( 3 i 2  :)($ 4 2  J 2  

(A. 13) 

We again obtain (2.51), though (2.52) is slightly altered both because our dimension- 

C = '  29 y = -C-Qur .  (A.14) 

less b is unity and because of polarization : 



278 J Grant and P H Roberts 

Working to order c2 ,  we again obtain (2.54) and (2.55), and matching to (A.12) we find 
that 

(A.15) 

a result which differs from (2.56) only by polarization effects. Similarly, the expression 
(2.34) for the effective radius differs from (2.57) only slightly: 

(A. 16) 

We see that, in the case of an uncharged impurity (a  = 0), beff - b is (to the order given in 
(A.16)) precisely a ‘displacement thickness’, w, defined as the thickness of a layer of fluid 
(of the same density as that far from the sphere) which, if placed on the surface of the 
impurity, would have the same mass as the healing layer actually present, ie in dimension- 
less units 

r2 dr = [l - Ic/;(r)]r2 dr, (A.17) sl‘ + w  s: 
(PF, equation (3.16)). 

Using (A.13), we may reduce (A. 16) to 

beff = 1 +(J2 -4a)c. (A.18) 

Direct substitution of our solution in the final term of (A.lO) gives, for the induced mass, 

(A.19) 

Thus, to order c, the induced mass of an uncharged impurity coincides with the classical 
value, $rb:ff, of a sphere of radius beff ,  rather than the actual radius b. 

We now compare our results with those obtained by PF. For uncharged spheres of 
radii 10 and 3 healing lengths (hl), PF obtained beff of 11.30 and 4.10 hl. These should be 
compared with our values of 11.41 and 4.41 hl. For a charged sphere with 2 = 20/27, 
PF obtained beff = 3.86 for a sphere of 3 hl radius, whereas we obtain beff = 3.80. I t  
may be noted that polarization tends to reduce beff - b. Indeed, PF exhibited negative 
beff in their table 2. This conclusion is in agreement with (A.18). If we apply our result 
to the extreme case in which c( = 400/27, the effective radius of a sphere of radius 3 hl 
is -6.1, according to (A.18); PF obtained -5.53 hl. 

Turning now to the induced mass, we express our results in terms of .A! = mind/mcl, 
the ratio of the induced mass to its classical value, 2n/3, based on the actual radius 
(b  = 1) of the sphere. According to (A.19), 

A = 1 +(3J2-?a)c+O(~~).  (A.20) 

For uncharged spheres of radii, 10, 3 and 1 hl, we obtain A = 1.42, 2.41 and 5.24, 
which should be compared with the values = 1.40,2.20, and 4.48 by PF. For a charged 
sphere of radius 3 hl and a = 400/27, we obtain A! = 2.06; for a radius of 10 hl and 
a = 0.4, we have .A! = 1.37; the values given by PF are 2.10 and 1.31 respectively. 

Since PF have provided a thorough discussion of the relationship of the present 
model to the practical problem of finding the effective masses of the neutral 3He atom 
and the positive ion. we will leave matters here, after one final remark. Although our 
dimensionless equations are identical to theirs, PF have neglected the recoil of the 

mind = $rb:ff( 1 +Gar + O(c2)). 
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impurity, and have used M instead of m* in casting their theory into dimensionless form 
The resulting difference in length scale does not appear to be negligible in the case of 
3He impurities, for which m* ‘Y i M .  

References 

Burdick B 1965 Phys. Rev. Lett. 14 11 
Clark R C 1965 Phys. Lett. 16 42-3 
__ 1966 Superfluid Helium ed J F Allen (Amsterdam: North Holland) 
Cole J D 1968 Perturbation Methods in Applied Mathematics (Waltham, Mass. : Blaisdell) 
Donnelly R J and Roberts P H 1969 Proc. R .  Soc. A 312 519-51 
van Dyke M 1964 Perturbation Methods in Fluid Mechanics (New York: Academic Press) 
Fetter A L 1974 The Physics ofLiquid and Solid Helium ed K H Bennemann and J B Ketterson (New York: 

Grant J 1971 J .  Phys. A :  Gen. Phys. 4 695-716 
Gross E P 1966 Quantum Fluids ed D F Brewer (Amsterdam: North Holland) 
Huang K 1963 Statistical Mechanics (New York: Wiley) 
Langer R E 1937 Phys. Rev. 51 669-76 
O’Malley J F 1963 Phys. Rev. 130 1070 
Padmore T C and Fetter A L 1971 Ann. Phys.. N Y  62 293-319 
Rayfield G W a n d  Reif F 1964 Phys. R e t .  136 A1 194208 
Roberts P H and Grant J 1971 J .  Phys. A :  Gen. Phys. 4 55-72 

Wiley) 


